Алгебра

Число Грэма

Так выглядит запись числа Грэма в стрелочной нотации Кнута. Как это расшифровать, сказать сложно, не имея законченного высшего образования в теоретической математике. Записать же его в привычном нам десятичном виде тоже невозможно: наблюдаемая Вселенная просто не в состоянии вместить его. Городить степень на степень, как в случае с гуголплексами, тоже не выход.

Хорошая формула, только непонятная

Так зачем же нужно это бесполезное на первый взгляд число? Во-первых, его для любопытных поместили в Книгу рекордов Гиннеса, а это уже немало. Во-вторых, оно использовалось для решения задачи, входящей в проблему Рамсея, что тоже непонятно, но звучит серьезно. В-третьих, это число признано самым большим, использовавшимся когда либо в математике, и не в шуточных доказательствах или интеллектуальных играх, а для решения вполне конкретной математической проблемы.

Внимание! Следующая информация опасна для вашего психического здоровья! Читая её, вы принимаете на себя ответственность за все последствия!

Для желающих испытать свой разум и помедитировать на число Грэма, можем постараться объяснить его (но только постараться).

Представьте себе 33. Это довольно легко – получается 3*3*3=27. А если теперь возвести тройку в это число? Получится 33 в 3 степени, или 327. В десятичной записи это равно 7 625 597 484 987. Много, но пока это можно осознать.

Советуем почитать статью: Какой самый быстро работающий браузер?

Интересно, у кого-то кроме него и ещё десятка суперматематиков получится добраться хотя бы до середины последовательности и не сойти при этом с ума?

Вы что-то поняли? Мы – нет. Но какой кайф!

Разряды натурального числа и значение разряда

Напомним, что от позиции, на которой стоит цифра в записи числа, зависит ее значение. Так, например, 1 123 содержит в себе: 3 единицы, 2 десятка, 1 сотню, 1 тысячу. При этом можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен и 1 служит значением разряда тысяч.

Разряд — это позиция, место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда располагаются старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Вы наверняка заметили, что в учебниках часто ставят небольшие пробелы при записи многозначных чисел. Так делают, чтобы натуральные числа было удобно читать. А еще — чтобы визуально разделить разные классы чисел.

Класс — это группа разрядов, которая содержит в себе три разряда: единицы, десятки и сотни.

Простые и составные числа – определения и примеры

Простые и составные числа относят к целым положительным. Они обязательно должны быть больше единицы. Делители также подразделяют на простые и составные. Чтобы понимать понятие составных чисел, необходимо предварительно изучить понятия делителей и кратных.

Простыми числами называют целые числа, которые больше единицы и имеют два положительных делителя, то есть себя и 1 .

Составными числами называют целые числа, которые больше единицы и имеют хотя бы три положительных делителя.

Единица не является ни простым ни составным числом. Она имеет только один положительный делитель, поэтому отличается от всех других положительных чисел. Все целые положительные числа называют натуральными, то есть используемые при счете.

Простые числа – это натуральные числа, имеющие только два положительных делителя.

Составное число – это натуральное число, имеющее более двух положительных делителей.

Любое число, которое больше 1 является либо простым, либо составным. Из свойства делимости имеем, что 1 и число а всегда будут делителями для любого числа а , то есть оно будет делиться само на себя и на 1 . Дадим определение целых чисел.

Натуральные числа, которые не являются простыми, называют составными.

Простые числа: 2 , 3 , 11 , 17 , 131 , 523 . Они делятся только сами на себя и на 1 . Составные числа: 6 , 63 , 121 , 6697 . То есть число 6 можно разложить на 2 и 3 , а 63 на 1 , 3 , 7 , 9 , 21 , 63 , а 121 на 11 , 11 , то есть его делители будут 1 , 11 , 121 . Число 6697 разложится на 37 и 181 . Заметим, что понятия простых чисел и взаимно простых чисел – разные понятия.

Ход занятия.

I. Мотивация (самоопределение) к учебной деятельности.

Здравствуйте, ребята!

— Я рада, что у вас отличное настроение, и вы готовы к занятию.

II. Актуализация знаний.

— Сейчас на доске я буду записывать цифры, а вы хором их называйте (записать на доске числа от 0-9)

— Что можете сказать о числах? (однозначные)

Игра «Убираем цифры».

Педагог задаёт задачу про цифры, которые по-прежнему написаны на доске, а каждый вызванный ребенок стирает с доски ту цифру, о которой идёт речь.

Убрать цифру:

• которая стоит сразу после цифры 7 (8);

• которая стоит непосредственно перед цифрой 4 (3);

• которая показывает, сколько раз я хлопну в ладоши (хлопнуть 4 раза);

• которая показывает, сколько глаз у человека (2);

• которая является самой большой нечетной из написанных (9)

• которая показывает, сколько гномов было у Белоснежки (7);

• решить пример 5+1 и вычеркнуть ответ (6);

• которая показывает самую хорошую отметку в школе (5);

•которая является ответом задачи: у мальчика была 1 конфета, он её съел. Сколько конфет осталось у мальчика? (0)

После этого на доске должна остаться цифра 1.

III. Создание проблемной ситуации, формулирование учебной проблемы.

Будьте все внимательны,

А еще старательны.

— Я загадала число,которое очень боится потерять ноль и часто повторяет такие слова:

Нолик мне терять нельзя,

Без него исчезну я.

Стану тощей единицей,

Буду плакать я и злиться!

— Отгадав это число, вы узнаете тему нашего занятия.

— Сформулируйте тему нашего занятия. (Мы познакомимся с числом 10)

Подписываю нуль на доске к оставшейся единице,

чтобы детям наглядно было видно цифру 10.

IV. Знакомство с числом 10.

— Где находится 10 в числовом ряду? (после 9)

— Где в жизни нам встречается число 10? (у человека 10 пальцев,10часов)

— Число 10, ребята, записывается с помощью 2 цифр – единицы и нуля.

— С какой стороны от единицы надо записать нуль для того, чтобы обозначить число 10?

Дети: С правой.

Педагог: Вот это цифра 10. Она обозначает число 10.

Круглый ноль такой хорошенький,

Что не значит ничегошеньки.

Если вместе рядом с ним единицу примостим,

То по больше станет весить, потому что это 10.

Педагог: Ребята, посмотрите, пожалуйста, на числовой ряд и скажите мне:

Чем отличается цифра 10 от других цифр?

Дети: Она состоит из двух знаков, а остальные по одному.

Педагог: 10 – это двузначное число. После, какого числа она стоит в числовом ряду?

Дети: после числа 9.

Педагог: Число 10 больше числа 9 или меньше?

Дети: Больше.

V/ Физминутка.

Педагог: Давайте посчитаем числовой ряд вместе со мной (0, 1, 2, 3, 4, 5, 6, 7, 8,9, 10)

— А где в жизни мы можем встретить число 10?

Дети: в часах, в календаре, у нас десять пальцев на двух руках и двух ногах, номер квартиры на двери или номер дома, на спортивной футболке.

Педагог: Ребята, а сейчас давайте ваши палочки будем считать десятками, у каждого разное количество десятков получится. Молодцы!

— А теперь будем выкладывать цифру 10 с помощью палочек.

VI. Подведение итогов. Рефлексия.

— Какая задача стояла перед нами на занятии?

— Вы справились с этой задачей?

— Какую тайну вы открыли для себя?: — Я познакомился…- Я узнал…

— Я смог… и т. д. Молодцы!

Миллиард = биллион?

Такое слово, как биллион, применяется для обозначения миллиарда только в тех государствах, в которых за основу принята «короткая шкала». Это такие страны, как Российская Федерация, Соединенное Королевство Великобритании и Северной Ирландии, США, Канада, Греция и Турция. В других странах понятие биллион означает число 10 12 , то есть один и 12 нулей. В странах с «короткой шкалой», в том числе в России, эта цифра соответствует 1 триллиону.

Такая неразбериха появилась во Франции в то время, когда происходило становление такой науки, как алгебра. Изначально у миллиарда было 12 нулей. Однако все изменилось после появления основного пособия по арифметике (автор Траншан) в 1558 году), где миллиард — это уже число с 9 нулями (тысяча миллионов).

Несколько последующих столетий эти два понятия употреблялись наравне друг с другом. В середине 20 века, а именно в 1948 году, Франция перешла на длинную шкалу системы числовых наименований. В связи с этим, короткая шкала, некогда позаимствованная у французов, все же отличается от той, которой они пользуются сегодня.

Исторически сложилось так, что Соединенное Королевство использовало долгосрочный миллиард, но с 1974 года официальная статистика Великобритании использовала краткосрочную шкалу. С 1950-х годов краткосрочная шкала все чаще использовалась в области технической письменности и журналистики, несмотря на то, что по-прежнему сохранялась долгосрочная шкала.

Бесчисленное множество различных чисел окружает нас каждый день. Наверняка многие люди хотя бы раз интересовались, какое число считается самым большим. Ребенку можно просто сказать, что это – миллион, но взрослые прекрасно понимают, что за миллионом следуют и другие числа. Например, стоит только каждый раз прибавлять к числу единичку, и оно будет становиться все больше – так происходит до бесконечности. Но если разобрать числа, имеющие названия, то можно узнать, как называется самое большое число в мире.

Самое большое число

Из школьного курса известно, что наибольшего числа не существует. Ведь если к самому большому числу прибавить хотя бы единицу, то получим еще большее число. Школьник с легкостью скажет, что, например, самое большое двузначное число — 99, а трехзначное — 999 и т.д.

Существует два алгоритма наименования чисел – английский и американский.

В американском названия больших чисел строятся следующим образом: сначала идет латинское порядковое числительное, а затем добавляется суффикс «иллион». Исключение – миллион. Далее получаются числа: триллион, квадриллион, квинтиллион. После идут секстиллион, септиллион, октиллион, нониллион и дециллион. Такой способ используют в США, Канаде, России и Франции.

Американский алгоритм наименования чисел

Английский алгоритм используют в Испании и Великобритании, а так же в ряде бывших колоний.

Здесь названия строятся так: к латинскому числительному прибавляют суффикс «иллион», к следующему числу (которое больше в 1000 раз) уже добавляют суффикс «иллиард».

После триллиона идет триллиард, после квадриллион, квадриллиард и т.д. Получается, что по английскому и американскому алгоритму одни и те же большие числа называются по-разному.

Читайте по теме: Самое маленькое число

В русский язык из английской системы пришел только миллиард (109), который американцы называют биллионом. Иногда в России употребляют слово триллиард, т.е. 1000 триллионов или квадриллион.

Самое большое простое число в мире – 274207281 – 1, которое содержит 22 338 618 десятичных цифр (простое число Мерсенна). Значение нашли в 2015 году в ходе проекта по распределенному поиску простых чисел Мерсенна GIMPS.

Поясним, что простыми называются натуральные (целые положительные) числа, имеющие только два делителя — единицу и само себя. Например, 2, 3, 5, 7 — простые числа. Список продолжают 11, 13, 17, 19… Кроме двойки все числа нечетные, иначе бы делились не только на единицу и себя, но и на два.

Значит, найденное простое число еще и самое большое из нечетных.

Маренн Марсен и самое большое простое число

По утверждению Евклида, простых чисел бесконечное множество, значит, наибольшего простого числа нет. Ученые до сих пор ищут числа-рекордсмены. И тому есть разумное объяснение. Всемирная организация Electronic Frontier Foundation учредила награды за подобные открытия: чем больше найденное число, тем выше награда.

Есть специальный способ проверки простоты чисел, который называется тест Люка-Лемера. Правда, предназначен он исключительно для чисел Мерсенна. Что же это за числа? Это вид натуральных чисел, расположенных в определенной последовательности. Имя им дал французский математик Мерсенн Марен. Вид числа Мерсенна такой:

Mn = 2n – 1,

где n — натуральное число.

При n = 1, 2, 3, 4, … числа Мерсенна образуют последовательность, начинающуюся с 1, 3, 7, 15. Затем идут 31, 63, 127. Продолжают ряд 255, 511, 1023, 2047 и т.д.

Такие числа используют в криптографии, например, для усовершенствования банковских кодов.

Внесистемные числа

Кроме чисел, которые записаны при помощи английской или американской систем, известны внесистемные числа. У них есть собственные названия, в которых нет латинских префиксов. Для понимания сначала рассмотрим запись латинскими числительными.

Единица – это 100, десять — 101 и так далее: миллиард — 109, триллион — 1012, квадриллион — 1015, квинтиллион — 1018, секстиллион — 1021, септиллион — 1024, октиллион — 1027, нониллион — 1030, дециллион — 1033.

С помощью приставок можно и дальше выводить числа: андециллион, дуодециллион, тридециллион и так далее. Но нужны собственные названия чисел, а тут только составные названия. Поэтому по этой системе собственных имен еще только три — вигинтиллион — 1063, центиллион — 10303, миллеиллион — 103003.

В миллеиллионе 3003 нуля

Число с собственным, а не составным названием больше 103003 получить невозможно. Однако числа больше миллеиллиона известны – это внесистемные числа.

Самое маленькое внесистемное число носит название мириада. Означает сотню сотен, т.е. 10000.

Какое самое большое число в цифрах

Несмотря на то, что рекордсмены среди чисел уже казалось бы, известны, все же многие ученые в этом сомневаются и продолжают свои поиски рекордсмена, будучи уверенными в том, что именно им это удастся. Одним из таких математиков стал американец из Миссури. В начале 2012 года его труды были вознаграждены и он смог открыть число, состоящее из 17 миллионов цифр. До этого самым большим считалось вычисленное в 2008 году компьютером число, состоящее из 12 тысяч цифр. Записывалось оно как 2 43112609-1.

После открытия американского ученого, многие ученые начали собственные проверки. На то, чтобы подтвердить, что именно это число наиболее большое, у них ушло 39 дней. Все расчеты проводились  на компьютерах.

Свойства целых чисел

Таблица содержит основные свойства сложения и умножения для любых целых a, b и c:

Свойство

Сложение

Умножение

Замкнутость

a + b — целое

a × b — целое

Ассоциативность

a + (b + c) = (a + b) + c

a * (b * c) = (a * b) * c

Коммутативность

a + b = b + a

a * b = b * a

Существование 

нейтрального элемента

a + 0 = a

a * 1 = a

Существование 

противоположного элемента

a + (−a) = 0

a ≠ ±1 ⇒ 1/a не является целым

Дистрибутивность 

умножения относительно

сложения

a * (b + c) = (a * b) + (a * c)

Пару слов о делении. В стандартном виде невозможно разделить число на множестве целых чисел, но можно делить с остатком. Это правило можно сформулировать так:

Для всяких целых a и b (b ≠ 0), есть один набор целых чисел q и r. При этом:

a = bq + r, где a — делимое, b — делитель, q — частное, r — остаток,

0 ≤ r < |b|, где |b| — абсолютная величина (модуль) числа b.

Один Гугол (Googol)

Часто используемое название популярной поисковой системы произносится почти также, как и слово googol (гугол). Это число имеет очень интересную историю, и вы без труда найдете её в интернете, если погуглите. Этот термин был впервые употреблен 9-летним Милтоном Сироттой (Milton Sirotta) в 1938 году. Это относительно абстрактное и формально существующее число, которому нашлось применение в определённых областях.

«Человек-Калькулятор» Алексис Лемар (Alexis Lemaire) установил мировой рекорд, вычислив корень 13-й степени из 100-значного числа. Для сравнения: корень 13-й степени из числа 8,192 равняется 2. Стозначное число – это гугол. Одно из чисел, которые Лемар вычислял, произносилось следующим образом – 3 гугола 893 дуотригинтиллиона (3 googol, 893 duotrigintillion)…и так далее. Еще одна область применения данного числа — это обозначение промежутка времени, примерно от 1 до 1.5 гугола лет, которые пройдут со времени большого взрыва, до взрыва самой массивной черной дыры. Это будет последним стабильным состоянием Вселенной перед распадом, и когда это случится, Вселенная войдет в пятую и последнюю эру своего существования, известную как Эра Темноты. Физический конец существования Вселенной основан на нескольких научных моделях.

Древние римляне: пятёрки и десятки

На первый взгляд, древние римляне так же, как греки, пользовались алфавитной записью чисел. На самом деле, они использовали только некоторые буквы для условного обозначения единиц и пятёрок в десятеричных разрядах. К слову, изначально часть этих цифробукв к буквам отношения не имели, это были похожие на римские буквы этрусские значки, условно обозначающие палец (I  – единица), ладонь (V – пятёрка, только у этрусков она была углом кверху) и две ладони рядом (X – десять). Римляне также пользовались для обозначения чисел буквами L (50, пять десятков), C (100), D (500, пять сотен) и M (1000). Большие числа обозначали, ставя наверху буквы черту, означавшую умножение на 1000. Так, 5000 – это V (5) с чертой, 10 000 – X (10) с чертой, и так далее. 2015 год древний римлянин обозначил бы вот так: MMXV (1000+1000+10+5). При таком способе записей отдельная буквоцифра для нуля не нужна, так что и самого нуля как числа римляне не знали.

Краткая история [ править | править код ]

Термин «миллион» итальянского происхождения и встречается уже в первой печатной арифметике (анонимной), вышедшей в итальянском городе Тревизо в 1478 году, и ещё ранее в нематематической книге путешественника Марко Поло (умер в 1324 году), а в форме «миллио» — уже в рукописи 1250 года.

В рукописи французского математика XV века Никола Шюке впервые появляются термины «биллион» — 10 12 , «триллион» — 10 18 и дальнейшие; в печатном руководстве биллион в значении 10 12 появляется в 1602 году.

В XVII веке во Франции начали употреблять короткую шкалу: «биллион» — 10 9 , «триллион» — 10 12 и т. д.

Слово «миллиард», имевшее вначале значение 10 12 , получило значение 10 9 (тысячи миллионов) в «Арифметике» Траншана (1558) и употреблялось во Франции в XIX веке наравне со словом «биллион». В Германии это слово вошло в употребление лишь после получения от Франции 5 миллиардов контрибуции после франко-прусской войны 1871 года.

Для чтения многозначных чисел анонимная рукопись 1200 года впервые рекомендует разбить цифры на группы по 3 или отмечать группы точками вверху или дугами; это же затем рекомендует Леонардо Пизанский (1228). К этой системе приходят и последующие авторы.

Использование систем наименования чисел в мире:

короткая шкала длинная шкала обе шкалы другие системы

В России первоначально была введена система наименования чисел с длинной шкалой, и, по-видимому, в печатном виде впервые в 1703 году в «Арифметике» Л. Ф. Магницкого. Однако в конце XVIII века, в царствование императора Павла I, вслед за Францией произошёл переход на короткую шкалу. Так, в опубликованном в 1798 году переводе части первой — «Арифметика» — «Курса математики» Этьенна Безу введена система наименования чисел с короткой шкалой, при том, что ещё в опубликованной в 1791 году книге «Арифметика или числовник» Н. Г. Курганова (1725 или 1726—1796) используется длинная шкала.

В 1948 году IX Генеральная конференция по мерам и весам приняла предложение Международного комитета мер и весов, рекомендующего для европейских стран применение длинной шкалы. Франция вернулась к системе с длинной шкалой, а в России продолжалось использование системы с короткой шкалой, которая была заимствована во Франции ранее. Однако, использование длинной шкалы предусматривается рекомендацией Совета экономической взаимопомощи PC 2625—70 «Основные математические обозначения» , где приводятся основные математические обозначения, употребляемые в нормативно-технической документации, научной и технической литературе и в школьных учебниках. Последнее позволяет утверждать, что официально во всех странах, образовавшихся после распада СССР, с 1948 года действует именно длинная система наименований чисел, хотя фактически продолжает применяться короткая система.

Произношение чисел

Числа от 1 до 20

Число Произношение Число Произношение
1 один 11 одиннадцать
2 два 12 двенадцать
3 три 13 тринадцать
4 четыре 14 четырнадцать
5 пять 15 пятнадцать
6 шесть 16 шестнадцать
7 семь 17 семнадцать
8 восемь 18 восемнадцать
9 девять 19 девятнадцать
10 десять 20 двадцать

Десятки и сотни

Число Произношение Число Произношение
10 десять 100 сто
20 двадцать 200 двести
30 тридцать 300 триста
40 сорок 400 четыреста
50 пятьдесят 500 пятьсот
60 шестьдесят 600 шестьсот
70 семьдесят 700 семьсот
80 восемьдесят 800 восемьсот
90 девяносто 900 девятьсот

Степени 10

Число Произношение 10n
1000 тысяча 103
1 000 000 миллион 106
1 000 000 000 миллиард 109
1 000 000 000 000 триллион 1012
1 000 000 000 000 000 квадриллион 1015
1 000 000 000 000 000 000 квинтиллион 1018
1 000 000 000 000 000 000 000 секстиллион 1021
1 000 000 000 000 000 000 000 000 септиллион 1024
1 000 000 000 000 000 000 000 000 000 октиллион 1027
1 000 000 000 000 000 000 000 000 000 000 нониллион 1030
1 000 000 000 000 000 000 000 000 000 000 000 дециллион 1033

Названия чисел после 20 – составные, т.е. поочередно произносятся все разряды каждого класса с добавлением названия самого класса (от старшего к младшему), за исключением первого класса.

Примеры:

  • 65 – “шестьдесят пять”;
  • 247 – “двести сорок семь”;
  • 1 518 – “одна тысяча пятьсот восемнадцать”;
  • 25 814 – “двадцать пять тысяч восемьсот четырнадцать”;
  • 450 627 – “четыреста пятьдесят тысяч шестьсот двадцать семь”;
  • 2 393 026 – “два миллиона триста девяносто три тысячи двадцать шесть”.

Истоки «стандартного словаря чисел»

Слова баймиллион и тримиллион впервые были записаны в 1475 году в рукописи Джехана Адама . Впоследствии Николя Шуке написал книгу Triparty en la science des nombres, которая не была опубликована при жизни Шуке . Тем не менее, большая часть этого была скопирована Эстьеном де Ла Рош для части своей книги 1520 года L’arismetique . В книге Шуке есть отрывок, в котором он показывает большое число, разделенное на группы по шесть цифр, с комментарием:

Адам и Шюке использовали длинную шкалу сил миллиона; то есть, Адам bymillion (Chuquet в byllion ) обозначается 10 12 , и Адам trimillion (Chuquet в tryllion ) обозначается 10 18 .

Сравнение систем

Таблица от значения к названию

Порядок Значение Название СИ
Американскаясистема Логикапостроения Европейскаясистема Логикапостроения
10 один один
1 103 тысяча 1 0001 + 0 тысяча 1 000 0000,5 кило
2 106 миллион 1 0001 + 1 миллион 1 000 0001,0 мега
3 109 биллион 1 0001 + 2 тысяча миллионов(миллиард) 1 000 0001,5 гига
4 1012 триллион 1 0001 + 3 биллион 1 000 0002,0 тера
5 1015 квадриллион 1 0001 + 4 тысяча биллионов(биллиард) 1 000 0002,5 пета
6 1018 квинтиллион 1 0001 + 5 триллион 1 000 0003,0 экса
7 1021 секстиллион 1 0001 + 6 тысяча триллионов(триллиард) 1 000 0003,5 зетта
8 1024 септиллион 1 0001 + 7 квадриллион 1 000 0004,0 йотта

Геометрические фигуры и задачи

Кошка Алиса: Мур, мур! Да, я люблю рисовать различные геометрические фигуры. А ребята помнят геометрические фигуры?

Назовите все геометрические фигуры, которые видите.

Сова: Ну что скажешь, Алиса, знают ребята геометрические фигуры?

Алиса :Мур, мур, знают. А вот,помнят они, как чертить отрезки, делить их и обозначать буквами?

Сова: А ты проверь. Дай им задачу и посмотри, помнят или забыли за лето?

Алиса: Хорошо. Вот вам геометрическая задача.

Начертите в тетради отрезок АВ длиной 1 дм 2 см. Разделите его точками на три равные части. Обозначьте буквами отмеченные точки. Запишите все полученные отрезки.

Ответ : АС, СD, DB..

∞ – Бесконечность

Все люди знают это число, и постоянно используют для преувеличения – например, как число «зиллион» (zillion – англ. несуществующее числительное, используемое в англоязычной среде для описания невообразимо крупных размеров, аналог в русском языке – сто тысяч миллиардов). Однако бесконечность не такое простое понятие, как кажется на первый взгляд. Если вы думали, что до сих пор в списке были очень странные числа, то это самое странное и противоречивое из всех чисел.

Согласно правилам бесконечности, существует бесконечное число, как четных, так и нечетных чисел. Тем не менее, нечетных чисел будет ровно половина от общего количества чисел. Бесконечность плюс единица равняется бесконечность, если отнять единицу получаем бесконечность, сложив две бесконечности получим бесконечность, а бесконечность поделённая на два равняется бесконечности, а если вычесть бесконечность из бесконечности, то результат не вполне ясен, а вот бесконечность поделённая на бесконечность, скорее всего, равняется единице.

Ученые определили, что в известной нам части Вселенной существует 1080 субатомных частиц, это та часть, которую ученые исследовали. Многие ученые уверены, что Вселенная бесконечная, а ученые, которые скептически относятся к бесконечности Вселенной, в данном вопросе всё-таки допускают такую вероятность.

Если Вселенная бесконечна, то с математической точки зрения получается, что где-то находится точная копия нашей планеты, поскольку существует вероятность, что атомы «двойника» занимают такое же самое положение, как и на нашей планете. Шансы, что такой вариант существует, ничтожно малы, хотя, в бесконечной Вселенной, это не только возможно, но и обязательно должно произойти, и, по меньшей мере, бесконечное число раз, при условии, что Вселенная все-таки бесконечно бесконечна.

Однако не все уверены, что Вселенная бесконечна. Израильский математик, профессор Дорон Зельбергер (Doron Zeilberger), убежден, что числа не могут увеличиваться бесконечно, и существует такое огромное число, что если вы прибавите к нему единицу, вы получите ноль. Тем не менее, это число и его значение лежат далеко за пределами человеческого понимания, и вероятно, это число никогда не будет найдено и доказано. Это убеждение является главным принципом математической философии, известной как «Ультрабесконечность».

Просмотров всего: 721 и сегодня: 1

Названия специальных простых чисел

Те числа, которые были найдены благодаря алгоритмам, созданным теми или иными учеными, и прошли тест простоты, называются специальными. Вот некоторые из них:

Простота этих чисел, названных в честь вышеперечисленных ученых, устанавливается с использованием следующих тестов:

4. Биллхарта – Лемера – Селфриджа и др.

Современная наука не останавливается на достигнутом, и, вероятно, в ближайшем будущем мир узнает имена тех, кто смог получить приз в 250.000 долларов, найдя наибольшее простое число.

В статье рассматриваются понятия простых и составных чисел. Даются определения таких чисел с примерами. Приводим доказательство того, что количество простых чисел неограниченно и произведем запись в таблицу простых чисел при помощи метода Эратосфена. Будут приведены доказательства того, является ли число простым или составным.